工程塑料、絕緣材料制造生產商
各種塑膠板、塑膠片、塑膠棒、工業用塑料制品
?新興材料:
新材料(或稱先進材料)是指那些新近發展或正在發展之中的具有比傳統材料的性能更為優異的一類材料。新材料是指新近發展的或正在研發的、性能超群的一些材料,具有比傳統材料更為優異的性能。新材料技術則是按照人的意志,通過物理研究、 材料設計、材料加工、試驗評價等一系列研究過程,創造出能滿足各種需要的新型材料的技術。
簡介:
隨著科學技術發展,人們在傳統材料的基礎上,根據現代科技的研究成果,開發出新材料。新材料按組分,有金屬材料、無機非金屬材料(如陶瓷、砷化鎵半導體等)、有機高分子材料、先進復合材料四大類。按材 料性能分,有結構材料和功能材料。結構材料主要是利用材料的力學和理化性能,以滿足高強度、高剛度、高 硬度、耐高溫、耐磨、耐蝕、抗輻照等性能要求;功能材料主要是利用材料具有的電、磁、聲、光熱等效應, 以實現某種功能,如半導體材料、磁性材料、光敏材料、熱敏材料、隱身材料和制造原子彈、氫彈的核材料等。新材料在國防建設上作用重大。例如,超純硅、砷化鎵研制成功,導致大規模和超大規模集成電路的誕生,使計算機運算速度從每秒幾十萬次提高到現在的每秒百億次以上;航空發動機材料的工作溫度每提高100℃,推力可增大24%;隱身材料能吸收電磁波或降低武器裝備的紅外輻射,使敵方探測系統難以發現等等。
21世紀科技發展的主要方向之一是新材料的研制和應用。新材料的研究,是人類對物質性質認識和應用向更深層次的進軍。
技術:
新材料技術是按照人的意志,通過物理研究、 材料設計、材料加工、試驗評價等一系列研究過程,創造出能滿足各種需要的新型材料的技術。新材料按材料的屬性劃分,有金屬材料、無機非金屬材料(如陶瓷、砷化鎵半導體等)、有機高分子材料、先進復合材料四大類。按材料的使用性能性能分,有結構材料和功能材料。結構材料主要是利用材料的力學和理化性能,以滿足高強度、高剛度、高 硬度、耐高溫、耐磨、耐蝕、抗輻照等性能要求;功能材料主要是利用材料具有的電、磁、聲、光熱等效應, 以實現某種功能,如半導體材料、磁性材料、光敏材料、熱敏材料、隱身材料和制造原子彈、氫彈的核材料等 。新材料在國防建設上作用重大。例如,超純硅、砷化鎵研制成功,導致大規模和超大規模集成電路的誕生,使計算機運算速度從每秒幾十萬次提高到現在的每秒百億次以上;航空發動機材料的工作溫度每提高100℃,推力 可增大24%;隱身材料能吸收電磁波或降低武器裝備的紅外輻射,使敵方探測系統難以發現, 新材料技術被稱為“發明之母”和“產業糧食”。
類型:
復合新材料
復合新材料使用的歷史可以追溯到古代。從古至今沿用的稻草增強粘土和已使用上百年的鋼筋混凝土均由兩種材料復合而成。20世紀40年代,因航空工業的需要,發展了玻璃纖維增強塑料(俗稱玻璃鋼),從此出現了復合材料這一名稱。50年代以后,陸續發展了碳纖維、石墨纖維和硼纖維等高強度和高模量纖維。70年代出現了芳綸纖維和碳化硅纖維。這些高強度、高模量纖維能與合成樹脂、碳、石墨、陶瓷、橡膠等非金屬基體或鋁、鎂、鈦等金屬基體復合,構成各具特色的復合材料。超高分子量聚乙烯纖維的比強度在各種纖維中位居第一,尤其是它的抗化學試劑侵蝕性能和抗老化性能優良。它還具有優良的高頻聲納透過性和耐海水腐蝕性,許多國家已用它來制造艦艇的高頻聲納導流罩,大大提高了艦艇的探雷、掃雷能力,在國內思嘉新材料開發的復合新材料代表了國內的較高水平。除在軍事領域,在汽車制造、船舶制造、醫療器械、體育運動器材等領域超高分子量聚乙烯纖維也有廣闊的應用前景。該纖維一經問世就引起了世界發達國家的極大興趣和重視。
中國復合新材料的發展
中國復合材料發展潛力很大,但須處理好以下熱點問題。復合材料創新
復合材料創新包括復合材料的技術發展、復合材料的工藝發展、復合材料的產品發展和復合材料的應用,具體要抓住樹脂基體發展創新、增強材料發展創新、生產工藝發展創新和產品應用發展創新。到2007年,亞洲占世界復合材料總銷售量的比例將從18%增加到25%,目前亞洲人均消費量僅為0.29kg,而美國為6.8kg,亞洲地區具有極大的增長潛力。
聚丙烯腈基纖維發展
中國碳纖維工業發展緩慢,從CF發展回顧、特點、國內碳纖維發展過程、中國PAN基CF市場概況、特點、“十五”科技攻關情況看,發展聚丙烯腈基纖維既有需要也有可能。
玻璃纖維結構調整
中國玻璃纖維70%以上用于增強基材,在國際市場上具有成本優勢,但在品種規格和質量上與先進國家尚有差距,必須改進和發展紗類、機織物、無紡氈、編織物、縫編織物、復合氈,推進玻纖與玻鋼兩行業密切合作,促進玻璃纖維增強材料的新發展。
開發能源、交通用復合材料市場
一是清潔、可再生能源用復合材料,包括風力發電用復合材料、煙氣脫硫裝置用復合材料、輸變電設備用復合材料和天然氣、氫氣高壓容器;二是汽車、城市軌道交通用復合材料,包括汽車車身、構架和車體外覆蓋件,軌道交通車體、車門、座椅、電纜槽、電纜架、格柵、電器箱等;三是民航客機用復合材料,主要為碳纖維復合材料。熱塑性復合材料約占10%,主要產品為機翼部件、垂直尾翼、機頭罩等。中國未來20年間需新增支線飛機661架,將形成民航客機的大產業,復合材料可建成新產業與之相配套;四是船艇用復合材料,主要為游艇和漁船,游艇作為高級娛樂耐用消費品在歐美有很大市場,由于中國魚類資源的減少、漁船雖發展緩慢,但復合材料特有的優點仍有發展的空間。
超導材料
有些材料當溫度下降至某一臨界溫度時,其電阻完全消失,這種現象稱為超導電性,具有這種現象的材料稱為超導材料。超導體的另外一個特征是:當電阻消失時,磁感應線將不能通過超導體,這種現象稱為抗磁性。
一般金屬(例如:銅)的電阻率隨溫度的下降而逐漸減小,當溫度接近于0K時,其電阻達到某一值。而1919年荷蘭科學家昂內斯用液氦冷卻水銀,當溫度下降到4.2K(即-269℃)時,發現水銀的電阻完全消失,
超導電性和抗磁性是超導體的兩個重要特性。使超導體電阻為零的溫度稱為臨界溫度(TC)。超導材料研究的難題是突破“溫度障礙”,即尋找高溫超導材料。
以NbTi、Nb3Sn為代表的實用超導材料已實現了商品化,在核磁共振人體成像(NMRI)、超導磁體及大型加速器磁體等多個領域獲得了應用;SQUID作為超導體弱電應用的典范已在微弱電磁信號測量方面起到了重要作用,其靈敏度是其它任何非超導的裝置無法達到的。但是,由于常規低溫超導體的臨界溫度太低,必須在昂貴復雜的液氦(4.2K)系統中使用,因而嚴重地限制了低溫超導應用的發展。
高溫氧化物超導體的出現,突破了溫度壁壘,把超導應用溫度從液氦( 4.2K)提高到液氮(77K)溫區。同液氦相比,液氮是一種非常經濟的冷媒,并且具有較高的熱容量,給工程應用帶來了極大的方便。另外,高溫超導體都具有相當高的磁性能,能夠用來產生20T以上的強磁場。
超導材料最誘人的應用是發電、輸電和儲能。利用超導材料制作超導發電機的線圈磁體,可以將發電機的磁場強度提高到5~6萬高斯,而且幾乎沒有能量損失,與常規發電機相比,超導發電機的單機容量提高5~10倍,發電效率提高50%;超導輸電線和超導變壓器可以把電力幾乎無損耗地輸送給用戶,據統計,目前的銅或鋁導線輸電,約有15%的電能損耗在輸電線上,在中國每年的電力損失達1000多億度,若改為超導輸電,節省的電能相當于新建數十個大型發電廠;超導磁懸浮列車的工作原理是利用超導材料的抗磁性,將超導材料置于永久磁體(或磁場)的上方,由于超導的抗磁性,磁體的磁力線不能穿過超導體,磁體(或磁場)和超導體之間會產生排斥力,使超導體懸浮在上方。利用這種磁懸浮效應可以制作高速超導磁懸浮列車,如上海浦東國際機場的高速列車;用于超導計算機,高速計算機要求在集成電路芯片上的元件和連接線密集排列,但密集排列的電路在工作時會產生大量的熱量,若利用電阻接近于零的超導材料制作連接線或超微發熱的超導器件,則不存在散熱問題,可使計算機的速度大大提高。
能源材料
能源材料主要有太陽能電池材料、儲氫材料、固體氧化物電池材料等。
太陽能電池材料是新能源材料,IBM公司研制的多層復合太陽能電池,轉換率高達40%。
氫是無污染、高效的理想能源,氫的利用關鍵是氫的儲存與運輸,美國能源部在全部氫能研究經費中,大約有50%用于儲氫技術。氫對一般材料會產生腐蝕,造成氫脆及其滲漏,在運輸中也易爆炸,儲氫材料的儲氫方式是能與氫結合形成氫化物,當需要時加熱放氫,放完后又可以繼續充氫的材料。目前的儲氫材料多為金屬化合物。如LaNi5H、Ti1.2Mn1.6H3等。
固體氧化物燃料電池的研究十分活躍,關鍵是電池材料,如固體電解質薄膜和電池陰極材料,還有質子交換膜型燃料電池用的有機質子交換膜等。
智能材料
智能材料是繼天然材料、合成高分子材料、人工設計材料之后的第四代材料,是現代高技術新材料發展的重要方向之一。國外在智能材料的研發方面取得很多技術突破,如英國宇航公司的導線傳感器,用于測試飛機蒙皮上的應變與溫度情況;英國開發出一種快速反應形狀記憶合金,壽命期具有百萬次循環,且輸出功率高,以它作制動器時、反應時間僅為10分鐘;形狀記憶合金還已成功在應用于衛星天線等、醫學等領域。
另外,還有壓電材料、磁致伸縮材料、導電高分子材料、電流變液和磁流變液等智能材料驅動組件材料等功能材料。
磁性材料
磁性材料可分為軟磁材料和硬磁材料二類。
1.軟磁材料
是指那些易于磁化并可反復磁化的材料,但當磁場去除后,磁性即隨之消失。這類材料的特性標志是:磁導率(μ=B/H)高,即在磁場中很容易被磁化,并很快達到高的磁化強度;但當磁場消失時,其剩磁很小。這種材料在電子技術中廣泛應用于高頻技術。如磁芯、磁頭、存儲器磁芯;在強電技術中可用于制作變壓器、開關繼電器等。目前常用的軟磁體有鐵硅合金、鐵鎳合金、非晶金屬。
Fe-(3%~4%)Si的鐵硅合金是最常用的軟磁材料,常用作低頻變壓器、電動機及發電機的鐵芯;鐵鎳合金的性能比鐵硅合金好,典型代表材料為坡莫合金(Permalloy),其成分為79%Ni-21%Fe,坡莫合金具有高的磁導率(磁導率μ為鐵硅合金的10~20倍)、低的損耗;并且在弱磁場中具有高的磁導率和低的矯頑力,廣泛用于電訊工業、電子計算機和控制系統方面,是重要的電子材料;非晶金屬(金屬玻璃)與一般金屬的不同點是其結構為非晶體。它們是由Fe、Co、Ni及半金屬元素B、Si 所組成,其生產工藝要點是采用極快的速度使金屬液冷卻,使固態金屬獲得原子無規則排列的非晶體結構。非晶金屬具有非常優良的磁性能,它們已用于低能耗的變壓器、磁性傳感器、記錄磁頭等。另外,有的非晶金屬具有優良的耐蝕性,有的非晶金屬具有強度高、韌性好的特點。
2.永磁材料(硬磁材料)
永磁材料經磁化后,去除外磁場仍保留磁性,其性能特點是具有高的剩磁、高的矯頑力。利用此特性可制造永久磁鐵,可把它作為磁源。如常見的指南針、儀表、微電機、電動機、錄音機、電話及醫療等方面。永磁材料包括鐵氧體和金屬永磁材料兩類。
鐵氧體的用量大、應用廣泛、價格低,但磁性能一般,用于一般要求的永磁體。
金屬永磁材料中,最早使用的是高碳鋼,但磁性能較差。高性能永磁材料的品種有鋁鎳鈷(Al-Ni-Co)和鐵鉻鈷(Fe-Cr-Co);稀土永磁,如較早的稀土鈷(Re-Co)合金(主要品種有利用粉末冶金技術制成的SmCo5和Sm2Co17),以及現在廣泛采用的鈮鐵硼(Nb-Fe-B)稀土永磁,鈮鐵硼磁體不僅性能優,而且不含稀缺元素鈷,所以很快成為目前高性能永磁材料的代表,已用于高性能揚聲器、電子水表、核磁共振儀、微電機、汽車啟動電機等。
納米材料
納米本是一個尺度,納米科學技術是一個融科學前沿的高技術于一體的完整體系,它的基本涵義是在納米尺寸范圍內認識和改造自然,通過直接操作和安排原子、分子創新物質。納米科技主要包括:納米體系物理學、納米化學、納米材料學、納米生物學、納米電子學、納米加工學、納米力學七個方面。
納米材料是納米科技領域中最富活力、研究內涵十分豐富的科學分支。用納米來命名材料是20世紀80年代,納米材料是指由納米顆粒構成的固體材料,其中納米顆粒的尺寸最多不超過100納米。納米材料的制備與合成技術是當前主要的研究方向,雖然在樣品的合成上取得了一些進展,但至今仍不能制備出大量的塊狀樣品,因此研究納米材料的制備對其應用起著至關重要的作用。
1.納米材料的性能
? 物化性能 納米顆粒的熔點和晶化溫度比常規粉末低得多,這是由于納米顆粒的表面能高、活性大,熔化時消耗的能量少,如一般鉛的熔點為600K,而20nm的鉛微粒熔點低于288K;納米金屬微粒在低溫下呈現電絕緣性;鈉米微粒具有極強的吸光性,因此各種納米微粒粉末幾乎都呈黑色;納米材料具有奇異的磁性,主要表現在不同粒徑的納米微粒具有不同的磁性能,當微粒的尺寸高于某一臨界尺寸時,呈現出高的矯頑力,而低于某一尺寸時,矯頑力很小,例如,粒徑為85nm的鎳粒,矯頑力很高,而粒徑小于15nm的鎳微粒矯頑力接近于零;納米顆粒具有大的比表面積,其表面化學活性遠大于正常粉末,因此原來化學惰性的金屬鉑制成納米微粒(鉑黑)后卻變為活性極好的催化劑。
擴散及燒結性能 納米結構材料的擴散率是普通狀態下晶格擴散率的1014~1020倍,是晶界擴散率的102~104倍,因此納米結構材料可以在較低的溫度下進行有效的摻雜,可以在較低的溫度下使不混溶金屬形成新的合金相。擴散能力提高的另一個結果是可以使納米結構材料的燒結溫度大大降低,因此在較低溫度下燒結就能達到致密化的目的。
力學性能 納米材料與普通材料相比,力學性能有顯著的變化,一些材料的強度和硬度成倍地提高;納米材料還表現出超塑性狀態,即斷裂前產生很大的伸長量。
2.納米材料的應用
納米金屬:如納米鐵材料,是由6納米的鐵晶體壓制而成的,較之普通鐵強度提高12倍,硬度提高2~3個數量級,利用納米鐵材料,可以制造出高強度和高韌性的特殊鋼材。對于高熔點難成形的金屬,只要將其加工成納米粉末,即可在較低的溫度下將其熔化,制成耐高溫的元件,用于研制新一代高速發動機中承受超高溫的材料。
“納米球”潤滑劑:全稱 “原子自組裝納米球固體潤滑劑”,是具有二十面體原子團簇結構的鋁基合金 成分并采用獨特的納米制備工藝加工而成的納米級潤滑劑。采用高速氣流粉碎技術,精確控制添加劑的顆粒粒度,可在摩擦表面形成新表面,對機車發動機產生修復作用。其成分設計及制備工藝具有創新性,填補了潤滑油合金基添加劑的空白技術。在機車發動機加入納米球,可以起到節省燃油、修復磨損表面、增強機車動力、降低噪音、減少污染物排放、保護環境的作用。
納米陶瓷:首先利用納米粉末可使陶瓷的燒結溫度下降,簡化生產工藝,同時,納米陶瓷具有良好的塑性甚至能夠具有超塑性,解決了普通陶瓷韌性不足的弱點,大大拓展了陶瓷的應用領域。
納米碳管 納米碳管的直徑只有1.4nm,僅為計算機微處理器芯片上最細電路線寬的1%,其質量是同體積鋼的1/6,強度卻是鋼的100倍,納米碳管將成為未來高能纖維的首選材料,并廣泛用于制造超微導線、開關及納米級電子線路。
納米催化劑 由于納米材料的表面積大大增加,而且表面結構也發生很大變化,使表面活性增強,所以可以將納米材料用作催化劑,如超細的硼粉、高鉻酸銨粉可以作為炸藥的有效催化劑;超細的鉑粉、碳化鎢粉是高效的氫化催化劑;超細的銀粉可以為乙烯氧化的催化劑;用超細的Fe3O4微粒做催化劑可以在低溫下將CO2分解為碳和水;在火箭燃料中添加少量的鎳粉便能成倍地提高燃燒的效率。
量子元件 制造量子元件,首先要開發量子箱。量子箱是直徑約10納米的微小構造,當把電子關在這樣的箱子里,就會因量子效應使電子有異乎尋常的表現,利用這一現象便可制成量子元件,量子元件主要是通過控制電子波動的相位來進行工作的,從而它能夠實現更高的響應速度和更低的電力消耗。另外,量子元件還可以使元件的體積大大縮小,使電路大為簡化,因此,量子元件的興起將導致一場電子技術革命。人們期待著利用量子元件在21世紀制造出16GB(吉字節)的DRAM,這樣的存儲器芯片足以存放10億個漢字的信息。
目前中國已經研制出一種用納米技術制造的乳化劑,以一定比例加入汽油后,可使象桑塔納一類的轎車降低10%左右的耗油量;納米材料在室溫條件下具有優異的儲氫能力,在室溫常壓下,約2/3的氫能可以從這些納米材料中得以釋放,可以不用昂貴的超低溫液氫儲存裝置。
應用:
隨著科學技術的進步,產業用紡織品新材料不斷地呈現發展趨勢,用途也不斷向多種領域擴展。一些具有特殊功能的纖維如芳綸、聚苯硫醚、碳纖維等,雖然價格較貴,但在環境保護、節能減排、阻燃耐高溫等領域仍被市場看好。
新材料作為高新技術的基礎和先導,應用范圍極其廣泛,它同信息技術、生物技術一起成為二十一世紀最重要和最具發展潛力的領域。同傳統材料一樣,新材料可以從結構組成、功能和應用領域等多種不同角度對其進行分類,不同的分類之間相互交叉和嵌套,目前,一般按應用領域和當今的研究熱點把新材料分為以下的主要領域:
電子信息材料、新能源材料、納米材料、先進復合材料、先進陶瓷材料、生態環境材料、新型功能材料(含高溫超導材料、磁性材料、金剛石薄膜、功能高分子材料等)、生物醫用材料、高性能結構材料、智能材料、新型建筑及化工新材料等
阻燃
建筑與紡織的聯姻是最近幾年才有的。將纖維放入混凝土中,起到增強建筑強力、抗老化的效果,已經取得了成效,在奧運場館的建設中,這樣的實例不少。但是,作為建筑行業使用的防火、阻燃材料紡織品,還沒有引起足夠的重視。2009年2月9日央視配樓的火災人們仍然記憶猶新。這場大火,給國家和人民群眾的生命財產安全帶來了嚴重危害。最近,媒體披露了失火原因系大樓外墻易燃材料——擠塑板遇燃放的煙花引燃起火。擠塑板雖然環保,但是具有易燃性,過火極快。使用這種易燃材料,一旦遇到火星,造成的損失就不可避免。在建筑工程領域,為了減少由此造成的損失,世界各國對阻燃材料的研究格外重視。一些高性能及高阻燃性的聚合物,包括聚醚醚酮(PEEK)、聚醚酰亞胺(PEI)、聚苯硫醚(PPS)、聚苯砜(PPSU)、聚醚砜(PES)、聚偏氟乙烯(PVDF)和改性聚苯醚(PPO)等浮出水面。
目前中國生產和使用最多的是阻燃劑整理織物,包括純棉、純滌綸、純毛、滌棉和各種混紡的耐久性阻燃織物和純棉、粘膠、純滌綸非耐久性洗滌阻燃織物,有識人士指出,隨著人民生活與環境條件的不斷改善,人們對阻燃紡織品性能要求越來越高,應投入人力和資金,加大開發尺寸穩定性、耐化學品性和耐磨性的阻燃纖維產品,擴大應用范圍。近年來,中國在研制阻燃材料方面投入了大量人力物力,其中產業用紡織品中阻燃、耐高溫材料受到格外關注,并成為阻燃纖維發展的方向和趨勢。2009年,一項重大科研成果——芳綸1313與耐高溫絕緣紙制備關鍵技術及產業化通過了中國紡織工業協會組織的專家鑒定,此項成果還獲得中國紡織工業協會科學技術一等獎。這項由上海東華大學、圣歐(蘇州)安全防護材料有限公司和廣東彩艷股份公司共同開發研究的技術和裝備,開啟了芳綸1313產業化的進程。圣歐開發部工程師顏言告訴記者,芳綸1313是一種綜合性能優良的高科技纖維,具有良好的物理機械性能。芳綸產品不僅具有可觀的經濟價值,而且還具有重要的戰略意義。因此它是目前世界上耐高溫纖維中發展最快的品種之一。他說,在目前年產間位芳綸2000噸的基礎上,公司決定擴建產能,二期工程計劃達到年產7000噸芳綸1313和3000噸絕緣復合材料的規模。
據了解,目前全世界芳綸產量在3.1萬噸,其中美國杜邦公司產量最大,為2.5萬噸,其次是日本帝人公司,年產2500噸左右。中國生產芳綸1313的企業主要有煙臺氨綸、圣歐集團和廣東彩艷股份公司等,年產總量在5000噸~6000噸之間,遠不能滿足市場的需要。中國產業用紡織品行業協會高級工程師張艷博士介紹說,國家出臺的建材下鄉政策,產業用紡織品可以助一臂之力。一些高性能纖維用于建筑材料,可以起到增強、防火、阻燃的功效。如果可以把這些高性能纖維納入建材下鄉的范圍,就可以擴大產業用紡織品用途,擴大產業用紡織品市場。
低碳:
環保低碳是當今世界主流,減少碳排放是國家長期目標。由于聚苯硫醚(PPS)纖維具有耐磨損、高熔點(200度不熔化)和穩定性的特征,為工業除塵首選材料,在中國煤炭、電力、水泥行業被廣泛使用,充當減排的“尖兵”。有資料顯示,目前,中國燃煤電力、燃煤鍋爐袋式除塵設備占到除塵設備總量不到10%。隨著國家環保力度加大,對袋式除塵技術優勢的認識也逐步提高,PPS纖維的年需求量將以每年30%以上的速度增長,市場前景十分廣闊。另外,PPS纖維在城市垃圾焚燒、汽車尾氣除塵、保溫材料、絕緣材料、化工過濾材料等其它方面的應用也十分廣闊,需求量也逐年加大。
近年來,中國加大了PPS纖維產業化進程。由中國紡織科學研究院參與工藝路線的研制,四川得陽科技股份有限公司承擔的國家級高新產品研發項目——聚苯硫醚纖維產業化生產,于2008年1月投料開車成功,打破了國外對中國的技術封鎖和產品銷售的壟斷。目前,得陽股份的聚苯硫醚生產能力已經接近3萬噸/年。為了適應國內外市場不斷增長的需求,該公司已經規劃實施了新的擴產項目,預計在2010年,聚苯硫醚的生產能力將穩居世界首位,產品的性能也將達到世界先進水平。